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In this paper we analyze the asymptotic behaviour of solutions to the Schrödinger–
Poisson–Slater (SPS) system in the frame of semiconductor modeling. Depend-
ing on the potential energy and on the physical constants associated with the
model, the repulsive SPS system develops stationary or periodic solutions. These
solutions preserve the Lp(R3) norm or exhibit dispersion properties. In com-
parison with the Schrödinger–Poisson (SP) system, only the last kind of solu-
tions appear.
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1. INTRODUCTION

The aim of this paper is to analyze the asymptotic behaviour of solutions
to the Schrödinger–Poisson–Slater (SPS) system.

The SPS system can be written in terms of the wave function
k: R3 × [0, T[ Q C and the charge density n(x, t)=|k(x, t)|2 as follows:

i(
“k

“t
=−

(
2

2m
Dxk+Vk − CSn

1
3 k, lim

|x| Q .

k(x, t)=0, (1)

k(x, t=0)=f(x), (2)

DxV=−En, lim
|x| Q .

V(x, t)=0, (3)

where E=1 (repulsive case) or E=−1 (attractive case) depending on the
type of interaction considered. Here, ( and m respectively hold for the



Planck constant and the particle mass. Also, CS stands for the Slater con-
stant. The system coincides with the Schrödinger–Poisson (SP) system
when the contribution of the last term (the Slater term) is not considered.
As usual, Eqs. (1)–(3) are understood in a weak sense and (3) determines
the self-consistent potential V originated by the charge of the particles. This
potential can be equivalently written in integral form as

V(x, t)=
E

4p
F

R
3

|k(xŒ, t)|2

|x − xŒ|
dxŒ.

The physical constants ((, m) that are usually involved in the formulation
of the Schrödinger equation can be normalized to unity for the sake of
simplicity. However, this normalization also modifies the Slater constant,
whose value is relevant for the subsequent analysis.

The SPS system describes the evolution of an electron ensemble in
a semiconductor crystal. The mixed-state SP system is commonly used to
model semiconductor devices (see ref. 23). However, the repulsive effect of
the Coulomb potential seems to be too strong when we compare the
behaviour of the solutions to the SP system to simulations of superlattice
structures (see refs. 25 and 27). These phenomena are also observed in the
context of attractive Coulomb potential. Some different approximations
have been studied to overcome this problem, obtaining appropriate adap-
tations of the Poisson potential. The Hartree–Fock model has been used to
analyze a wide variety of phenomena in Quantum-Chemistry and Solid
State Physics (see refs. 1, 16, and 22). The time-dependent Hartree–Fock
equation has been analyzed in refs. 14 and 9. One of the most interesting
corrections to the Poisson potential in the SP system is found by deriving
nonlinear |k|a terms from the Fock potential via various limits, in particu-
lar the low density limit, (3) which gives a=2/3. This kind of |k|a approxi-
mations to the Fock term is usually called the Xa-approach. Another
motivation for this approximation in Quantum-Chemistry is the enormous
quantity of calculations necessary to evaluate the Fock term, usually of
order N4, N being the number of particles. In this direction, the Xa

approach to the Fock correction (Dirac, Slater,...) has been proved rele-
vant in different contexts. These local approximations to nonlocal inter-
action terms give excellent results when studying stationary states, for
example in Quantum Chemistry (see ref. 7 and refs. 17, 20, and 4 for some
derivations and analysis of these systems). Then, the calculations are
reduced from N4 to N3, even there might be some place for improvements.
However, there is no rigorous foundation of the Xa-model in the time-
dependent case. In this direction, following the classical ideas of the ther-
modynamical limit in Statistical Mechanics (see ref. 8) some recent advances
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are being done from the continuum and mean-field limit of the N-quantum-
particle system by C. Bardos et al., see ref. 2.

The aim of this work is to analyze the qualitative differences between
the Schrödinger–Poisson–Slater (a=2

3) evolution system and the Schrödinger–
Poisson and Hartree–Fock systems. We are mainly interested in the Xa

case studied in semiconductor theory, that is a=2
3 , which is derived from

the Fock term by means of a low density limit, see ref. 3. This |k|2/3 k

correction is also known as the Dirac exchange term. Another interesting
approach comes from the limit of heavy atoms, i.e., the high charge of
nuclei limit; this leads to the Thomas–Fermi correction (a=4/3) of the
kinetic energy, see refs. 17 and 18. In this paper we do not approximate the
kinetic energy term (which is also called the von Weizsäcker correction).
However, the Thomas–Fermi term can be alternatively seen as a correction
of the Fock interaction, that always appears as a repulsive potential, see
ref. 18. As we will point out later, these other Xa-approaches, useful in
many scientific contexts, can be treated in our mathematical framework.

One important feature of the SPS system is that its associated poten-
tial energy can reach negative values depending on the constants of the
system (mass, initial energy, or Slater constant). This fact implies some
relevant properties of the SPS system in the repulsive case: (1) the
minimum of the total energy operator is negative for some choices of the
physical constants; (2) there are solutions (depending on the initial energy)
that do not have dispersive character; (3) there are steady-state solutions,
i.e., solutions with constant density; (4) there are solutions, even with posi-
tive energy, which preserve the Lp norm and do not decay with the time
evolution. These properties show important qualitative differences between
the SPS system and the SP and Hartree–Fock systems, see refs. 12, 6, 9,
and 14. On the other hand, the Xa-Slater-model appears as an appropriate
correction to the self-consistent Coulomb potential in semiconductor
heterostructures modeling, in the sense that it covers different phenome-
nologies observed in this context. Some of our results hold true under the
hypothesis of a relation between the value of the Slater constant, the mass
and the energy of the system. However, the Slater constant is a character-
istic of the component metals in the semiconductor device as it was pointed
out in ref. 11 when interpreting the exchange-correlation potential of
Kohn–Sham type. In this way, our study covers the whole range of varia-
tion for these constants, and the relation between these constants appears
in a natural way and is not a restriction from a physical point of view. As
we have commented before, the main differences with respect to the SP
system occur in the repulsive case, where non dispersive effects, stationary
and periodic solutions appear. However, the attractive case is also of
interest in applications related to quantum gravity in the limit of very
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heavy particles (see, for example, ref. 24), thus we analyze both cases. We
focus our study in the single-state case.

In ref. 3, the mixed-state case for the SPS system has been dealt with.
In particular, the well-posedness and regularity of local-in-time and global
solutions was analyzed, with L2 or H1 initial data. Also, the basic conser-
vation laws and the minimal energy solutions in the attractive case were
derived under a variational framework. A different approach for the single-
state case can be seen in ref. 5.

Most of these results are valid for other Xa-approaches. However, moti-
vated by the applications in semiconductor theory, we focus our efforts in the
Slater approach to the Fock term. We will comment along the paper on some
extensions of the results to other Xa-terms or some combination of them.

Let us summarize the main results and the techniques used in the paper
in comparison with previous results. Section 2 is devoted to the minimiza-
tion of the energy functional in the repulsive case. This allows us to deduce
the existence of stationary solutions with negative energy as well as optimal
bounds for the kinetic energy. To deal with this nonconvex minimization
problem we can use different techniques introduced in refs. 17, 19, and 21.
This problem was treated in ref. 3 (in the attractive case) by using symme-
tric decreasing rearrangement inequalities, but this tool seems to be fruitless
in the repulsive case. Some minimization problems related to the repulsive
case are studied in ref. 17 and in refs. 22 and 4 for small enough values of
the mass upon using a perturbative argument. Alternatively, we propose
here a scaling argument which provides effective bounds on the mass. In the
third section we analize the long time behaviour of SPS solutions. The
balance between the Coulombian potential and the Slater correction makes
the usual arguments (based on the pseudo-conformal law) powerless. In our
analysis we combine this property, or the equivalent dispersion equation,
with the Galilean invariance in order to conclude some Lp(R3) estimates.
Also, from the dispersion equation (which relates the total energy to the
momentum and position dispersions) it can be deduced that the solution is
expansive in the sense that its second order moment increases with time.
Finally, in Section 4 we analyze the asymptotic behaviour of the SPS solu-
tions under attractive Coulomb forces. Actually, we prove the existence of
stationary solutions in the case of negative energy.

2. MINIMUM OF THE ENERGY IN THE REPULSIVE CASE:

STATIONARY SOLUTIONS, SOLUTIONS PRESERVING THE L p

NORM AND EVOLUTION OF THE KINETIC ENERGY

The Slater term introduces some qualitative differences in the behav-
iour of the solutions to the SPS system when compared to solutions to the
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SP system. While the SP energy in the repulsive case is always positive, this
can be negative when the Slater contribution is considered. The total
energy operator associated with the solutions to the SPS system has the
following form:

E[k]=F
R

3
3 |Nk(x, t)|2

2
+F

R
3

E |k(x, t)|2 |k(xŒ, t)|2

8p |x − xŒ|
dxŒ −

3CS

4
|k(x, t)|

8
3 4 dx.

(4)

E is an invariant of motion (i.e., E is preserved along the time evolution)
provided that k is such that E[k] is well-defined (see ref. 3). We refer to
the first term in the right-hand side of (4) as the kinetic energy EKIN(k),
while the sum of the last two terms is the potential energy EPOT(k). In (4),
the expression of the Coulombian potential has been identified as

1
2

F
R

3
V(x) n(x) dx=

E

2
F

R
3

|NV(x)|2 dx.

However, in the repulsive case E=1, we can prove that the potential energy
is always negative for some choice of the Slater constant in terms of the
mass of the system. The following result corroborates this feature.

Lemma 2.1. If the L2(R3) norm of the initial data f associated with
the SPS system verifies

||f||L2(R
3) [ 13CS

2C
2

3
4
,

where CS is the Slater constant and C is a positive constant determined by

1
C

=Inf 3
||k( · , t)||

8
3

L
8
3(R

3)

||NV(k)( · , t)||2
L2(R

3)

; k ¥ L
8
3 (R3) 5 L2(R3), ||k( · , t)||L2=14 ,

then the potential energy of the solutions is negative along the time evolution.

Proof. This result is based on the following inequality, valid for all
k ¥ L2(R3) 5 L

8
3 (R3):

||NV(k)( · , t)||2
L2(R

3) [ C ||k( · , t)||
4
3
L2(R

3) ||k( · , t)||
8
3

L
8
3(R

3)
. (5)

This inequality is a direct consequence of Hölder and Hardy–Littlewood–
Sobolev inequalities as well as of the interpolation inequalities for Lp

spaces.
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Applying (5) to solutions k of the SPS system and using that the
L2-norm of the initial data is preserved along the time evolution, we
conclude the proof by writing

EPOT(k)(t) [ 1C
2

||k( · , t)||
4
3
L2(R

3) −
3
4

CS
2 ||k( · , t)||

8
3

L
8
3(R

3)
. L

Remark. The inequality (5) as well as an upper bound for the sharp
constant C were found by Lieb and Oxford in ref. 16. In our context, this
bound takes the value C=1.092

2p
=0.1737.

Furthermore, since the potential energy associated with the initial data
can be negative in the repulsive case we can find initial conditions for
which the total energy is also negative, as proved in the following

Proposition 2.2. There exist initial data f ¥ H1(R3) for which the
total energy in the repulsive case is negative.

Proof. Let k ¥ H1(R3) such that the associated potential energy is
negative (this may happen by virtue of Lemma 2.1). Then, there is s > 0
small enough such that the total energy of ks(x)=s

3
2 k(sx),

E[ks]=s2EKIN(k)+sEPOT(k), (6)

is nonpositive. Then, by choosing f=ks as initial condition, the energy
associated with this problem is nonpositive. L

Remark. The same thing occurs when other Xa terms are con-
sidered. The total energy functional also reaches negative values when
couplings of the Coulombian potential with power nonlinearities |k|a k, a ¥

(0, 4/3] are considered. Combinations of some of these terms could be also
possible in their attractive or repulsive versions. However, some other kind
of problems appear in the minimization argument, as we will mention in
the next subsection.

Proposition 2.2 allows to remark some important differences between
the asymptotic behaviour of solutions to our system and those to the SP
system. For the repulsive SP system it was proved (see refs. 6 and 12) that
the Lp norms of the solutions tend asymptotically in time to zero for
p ¥ ]2, 6]. However, when we analyze the evolution of solutions to the
repulsive SPS system whose initial data has negative energy, we observe
that the L

8
3 norm of the wave function k cannot go to zero as t Q .. This

is because the total energy of the system is preserved and the Slater term is
the only nonpositive contribution to the total energy.
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One of the relevant points in the analysis of this problem is the exis-
tence of a global minimum of the energy functional in H1(R3) under the
constraint ||k||L2(R

3)=M. This problem has no solution for the repulsive SP
system because the infimum of the energy is always 0, which is not a
minimum except for the case M=0. In the following section we prove the
existence of such a minimum for the SPS problem, for solutions with suffi-
ciently small L2(R3) norm.

2.1. Minimum of Energy in the Repulsive Case

In this section we study the following minimization problem associated
with the total energy of the repulsive SPS system

IM=inf{E[k]; k ¥ H1(R3), ||k||L2(R
3)=M}, (7)

where M > 0 and E[k] is defined by (4). The main result of this section
claims that this functional reaches a minimum value, which allows us to
deduce two interesting consequences. The first one is the existence of sta-
tionary profiles, which are periodic-in-time solutions to the SPS system
preserving the density. We also note that this kind of solutions does not
exist for the repulsive SP system. The second consequence is the derivation
of optimal bounds for the kinetic energy of solutions for which the total
energy is well-defined.

Let us prove the results that ensure the existence of a minimum of (7).
Firstly we observe that the energy operator is bounded from below in terms
of the problem (7). From the Gagliardo–Nirenberg inequality we get

||k||
8
3

L
8
3(R

3)

c
8
3 ||k||

5
3

L
2
(R

3)

[ ||Nk||L2(R
3), (8)

which holds for all k( · , t) ¥ H1(R3). Using (8) and the fact that in this case
the Coulombian potential term is nonnegative we obtain

E[k] \ 1 >R
3 |k(x)|

8
3 dx

c
8
3 M

5
3

22

−
3
2

CS F
R

3
|k(x)|

8
3 dx. (9)

The right-hand side of (9) can be seen as a second order polynomial
ax2+bx in >R

3 |k|
8
3 dx, where

a=(c
8
3 M

5
3 )−2 and b=− 3

2 CS.
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Thus, we immediately conclude that the total energy is bounded from
below. Furthermore, we can deduce the boundedness in H1(R3) of any
minimizing sequence, which plays an important role in our argument to
obtain the minimum of the functional.

The technical difficulties arising in this nonconvex minimization
problem come from the invariance of the total energy functional by the
non-compact group of translations. The possible loss of compactness due
to that invariance has to be detected by the techniques used in the proofs.
In this way, two methods are proposed in the previous literature to analize
the class of problems (7): the concentration-compactness method (21) and the
method of the nonzero weak convergence after translations. (19) In fact, we
can prove that every minimizing sequence is in essence relatively compact
provided that a certain sub-additivity property is strict. This condition
implies that a minimizing sequence is concentrated in a bounded domain.
Recently, this lack of compactness has been analyzed in ref. 10 for the
Sobolev embedding. Since an important part of the intermediate steps are
common to both (concentration-compactness and nonzero weak conver-
gence after translations in Sobolev sapces) techniques, we will comment the
application of them.

2.1.1. Concentration-Compactnes Argument

We can use the following formulation of the concentration-compact-
ness principle adapted to our situation.

Proposition 2.3. For every M > 0, the following inequality

IM [ Ia+IM − a, -a ¥ (0, M), (10)

holds. Furthermore, every minimizing sequence of (7) is relatively compact
in H1(R3) (up to a translation) if and only if

IM < Ia+IM − a, -a ¥ (0, M). (11)

Proof. The proof is a consequence of Lemmas III.1 and I.1 in
ref. 21. In order to make the paper self-consistent, we adapt these results to
our notation. The general framework for minimization problems proposed
by P. L. Lions allows us to establish the condition (10). Consider a mini-
mizing sequence {un} of (7). Since this sequence is bounded in H1(R3) with
||un ||2

L2(R
3)=M, then there exists a subsequence nk ¥ N for which either

compactness or vanishing or dichotomy occurs (Lemma III.1, ref. 21). In
order to prove compactness let us prove that vanishing and dichotomy
cannot occur. The strict sub-additivity condition (11) prevents the sub-
sequence from dichotomy. This property is stated as follows: there exists
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a ¥ ]0, M[ such that for every e > 0, there exist k0 \ 1 and u1
k, u2

k bounded
in H1(R3) satisfying

˛
||unk

− (u1
k+u2

k)||Lp(R
3) [ dp(E) Q 0, E Q 0+, 2 [ p < 6;

:F
R

3
|u1

k |2 dx − a : [ e, :F
R

3
|u2

k |2 dx − (M − a): [ e;

dist(Supp u1
k, Supp u2

k) Q ., k Q .;

lim inf
k

F
R

3
{|Nunk

|2 − |Nu1
k |2 − |Nu2

k |2} dx \ 0;

for k \ k0. Indeed, if dichotomy occurs we easily deduce that

IM \ Ia+IM − a,

which yields a contradiction. On the other hand, if strict sub-additivity
does not occur, then a minimizing sequence can be constructed without
convergent subsequences (see ref. 21 for details). Vanishing occurs when

lim
k Q .

sup
y ¥ R

3
F

y+BR

|unk
(x)|2 dx=0, -R < ., BR={x ¥ R3, |x| < R}.

It can be proved that the subsequence does not vanish as follows from the
fact that IM < 0 and from the following result (Lemma I.1, ref. 21 with
q=2, p=2, and a=8/3):

Lemma 2.4. Let 1 < p [ . and 1 [ q < . with q ]
3p

3 − p if p < 3.
Assume that un is bounded in Lq(R3), Nun is bounded in Lp(R3) and

sup
y ¥ R

3
F

y+BR

|un |q dx `n 0 for some R > 0.

Then, un `n 0 in La(R3) for a ¥ [q, 3p
3 − p].

Hence, we have proved that any minimizing sequence satisfies the
following compactness criterium: there exists yk ¥ R3 such that
|unk

( · +yk)|2 is tight

-e > 0, ,R < ., F
yk+BR

|unk
(x)|2 \ M − e.
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Setting ũn=un( · +yn), we can assume (up to a subsequence) that ũn Q ũ
weakly in H1(R3) and the compactness property implies

F
BR

|ũ|2 dx \ M − e.

Thus, ũn converges strongly in L2(R3) to ũ. By using the Gagliardo–
Nirenberg inequality, ũn converges strongly to ũ in Lp(R3) for 2 [ p < 6.
This fact allows to assure that ũ is a minimum of the problem IM as con-
sequence of the weak lower semi-continuity of the H1(R3) norm and the
convergence EPOT(ũn) Q EPOT(ũ). Thus, a posteriori we deduce

F
R

3
|Nũn |2 dx `n F

R
3

|Nũ|2 dx,

showing the compactness in H1(R3). L

To obtain the relative compactness of any minizing sequence (up to
translations) has been used the concentration-compactness argument that
can be equivalently replaced by the arguments based on nonzero weak
convergence after translations. (19) The point which is common to both
techniques is that hypothesis (11) is required.

2.1.2. Nonzero Weak Convergence after Translations

In this approach, we apply the next two results to any minimizing
sequence {un}n ¥ N of (7) to guarantee the existence of a nonzero weak con-
vergent subsequence in H1(R3) up to translations (see ref. 19, Theorem 8.10,
and exercise 2.22, for more details):

Lemma 2.5 (Exercise 2.22, ref. 19). Suppose that 1 [ p < q <
r [ . and that u is a function in Lp(W) 5 L r(W) with ||u||Lp(W) [ Cp < .,
||u||Lr(W) [ Cr < ., and ||u||Lq(W) \ Cq > 0. Then, there are constants E > 0 and
M > 0, depending only on p, q, r, Cp, Cq, Cr, such that Meas({x: |u(x)|
> E}) > M.

Theorem 2.6 (Theorem 8.10, ref. 19). Let 1 < p < . and let
{un}n ¥ N be a bounded sequence of functions in H1(R3). Suposse that for
some E > 0 the set En :={x: |un(x)| > E} satisfies Meas(En) > d > 0 for
some d and all n ¥ N. Then, there is a sequence of vectors yn ¥ R3 such that
the translated sequence ũn(x) :=u(x+yn) has a subsequence that converges
weakly in H1(R3) to a nonzero function.

Any function un verifies the hypothesis of Lemma 2.5 with p=2,
q=8/3, p=6, Cp=M, and Cq=(−4IM/3CS)

8
3 , Cr being a constant which
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comes from the boundedness of {un}n ¥ N in H1(R3). Then, the whole
sequence satisfies the hypotheses of Theorem 2.6. As consequence, there
exist vectors yn such that a subsequence of un verifies

ũn :=un( · +yj) Q ũ weakly in H1(R3), ||ũ||H1(R
3) > 0. (12)

In order to deduce that ũ is a minimizer of (7) we have to prove that

EPOT(ũ) [ lim inf EPOT(ũn).

To this aim, it is enough to observe that no charge escapes to infinity, i.e.,
||ũ||L2(R

3)=M, because this would imply the convergence ũn Q ũ in L2(R3)
and EPOT(ũn) Q EPOT(ũ). The inequality (11) plays a crucial role at this
point. If ||ũ||L2(R

3)=a < M, then it can be proved that ũn is under the
dichotomy hypothesis. Indeed, there exists R > 0 such that >BR

|ũ|2 dx=
a − E/2, for E > 0. On the other hand, let Rn be such that >BRn

|ũn |2 dx=
a+E/2. The sequence {Rn}n ¥ N Q . as n Q . (otherwise, this would contradict
(12)). We define ũ1

n :=ũnqBR
and ũ2

n :=ũnqR
3 −BRn

, where n ¥ N and qW denotes
the characteristic function of the set W. Then, we have that {ũn} verifies

˛
||ũn − (ũ1

n+ũ2
n)||Lp(R

3) [ dp(E) Q 0, E Q 0+, 2 [ p < 6;

:F
R

3
|ũ1

n |2 dx − a : [ E, :F
R

3
|ũ2

n |2 dx − (M − a): [ E;

dist(Supp ũ1
n, Supp ũ2

n)=Rn − R Q ., n Q .;

lim inf
k

F
R

3
{|Nũn |2 − |Nũ1

n |2 − |Nũ2
n |2} dx \ 0;

for n \ n0. The incompatibility between dichotomy and (11) allows to
conclude that ||ũ||L2(R

3)=M as well as the minimizing charater of ũ. This
concludes the proof with the technique of nonzero weak convergence after
translations in Sobolev spaces.

Before deriving the inequality (11) in the SPS context, let us introduce
some notations. Let a, b, c be positive constants and consider the operators
TKIN, TPOT, T, K: H1(R3) 0 R defined by

TKIN(k)=a F
R

3
|Nk(x)|2 dx,

TPOT(k)=F
R

3
3b F

R
3

|k(x)|2 |k(xŒ)|2

|x − xŒ|
dxŒ − c |k(x)|

8
3 4 dx,

T(k)=TKIN(k)+TPOT(k), K(k)=−
1
4

(TPOT(k))2

TKIN(k)
.
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Then, we have the following

Lemma 2.7. The minimization problems associated with the opera-
tors T and K over the set

BM={k ¥ H1(R3); ||k||L2(R
3)=M, TPOT(k) < 0}

are equivalent in the following sense

TM — inf{T[k]; k ¥ BM}=inf{K[k]; k ¥ BM} — KM.

In addition, if k is a function in which T achieves its minimum, then it is
also the minimum for the functional K. On the other hand, if k is a func-
tion in which K achieves its minimum, then the function ks is a minimum
for T, where ks(x)=s

2
3 k(sx) and s=−TPOT(k)

2TKIN(k) .

Proof. We first remark that the scaling ks(x)=s
3
2 k(sx), s > 0,

preserves the properties of BM. Then, the result can be easily deduced by
optimizing for every k ¥ BM the value of the parameter s for which the
total energy reaches the minimum over the uniparametric family of func-
tions {ks; s ¥ R+}. L

As a particular case, we obtain a minimization problem equivalent
to (7). Denoting AM={k ¥ H1(R3); ||k||L2(R

3)=M, EPOT[k] < 0}, we have

IM=inf{E[k]; k ¥ H1(R3), ||k||L2(R
3)=M}=inf{E[k]; k ¥ AM},

which shows that our problem is equivalent to

inf 3 −
1
4

(EPOT(k))2

EKIN(k)
; k ¥ AM

4 . (13)

Also, note that the set AM is nonempty for any value of M, see refs. 22
and 4.

Furthermore we have − EPOT(kM)=2EKIN(kM), where kM denotes the
minimizer of IM. Consequently,

E(kM)=1
2 EPOT(kM)=−EKIN(kM). (14)

Using Lemma 2.7 we can prove the following result, which provides the
strict sub-additivity property (11).

Proposition 2.8. For all CS > 0 and M > 0 such that

M < 1 7CS

10C
2

3
4
, (15)
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the sub-additivity condition (11) holds. Here, CS denotes the Slater con-
stant and C is the sharp constant in (5).

Proof. Assume that M satisfies (15). Using the scaling

k(x) 0 M4k(M2x),

the set AM can be seen, for each M ¥ R+, as a transformation of the set

B −

M :={k ¥ H1(R3); ||k||L2(R
3)=1, EM

POT(k) < 0},

where

EM
POT(k)=

M6

8p
F

R
3

F
R

3

|k(x)|2 |k(y)|2

|x − y|
dx dy −

3CSM
14
3

4
F

R
3

|k(x)|
8
3 dx.

In the same way, (7) can be rewritten as

IM=inf{EM
KIN(k)+EM

POT(k); k ¥ B −

M},

where EM
KIN(k)=M6

2 >R
3 |Nk(x)|2 dx. Since EM

POT(k) < 0 by (15) and the
proof of Lemma 2.1, we can take B −

M={k ¥ H1(R3); ||k||L2(R
3)=1}. Under

this assumption, our minimization problem reads

IM=M
14
3

− p inf 3M
4
3
+p

2
F

R
3

|Nk(x)|2 dx+
M

4
3
+p

8p
F

R
3

F
R

3

|k(x)|2 |k(y)|2

|x − y|
dx dy

−
3CSMp

4
F

R
3

|k(x)|
8
3 dx; k ¥ H1(R3), ||k||L2(R

3)=14 ,

where p is a positive parameter to be precised. Then, we can apply
Lemma 2.7 to show that this problem is equivalent to

IM=M
14
3

− p inf 3 −
(M

2
3
+

p
2 >R

3 |NV(k)|2 dx dy − 3CS
2 M

p
2

− 2
3 >R

3 |k(x)|
8
3 dx)2

8 >R
3 |Nk(x)|2 dx

;

k ¥ H1(R3), ||k||L2(R
3)=14=def M

14
3

− pIM
1 .

Now (11) can be written as

M
14
3

− pIM
1 < a

14
3

− pIa
1+(M − a)

14
3

− p IM − a
1 , -a ¥ (0, M). (16)
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This inequality is based on the bound

Mk > ak+(M − a)k, -a ¥ (0, M), M ¥ R+, -k > 1.

We easily deduce

M
14
3

− pIM
1 < a

14
3

− pIM
1 +(M − a)

14
3

− p IM
1 , -a ¥ (0, M),

for some p ¥ ( 4
3 , 11

3 ). To get (16) it is enough to show that for all g ¥ (0, M),
IM

1 [ Ig
1 holds. This is true according to the nonincreasing character of the

function

fk: g 0 −
1
8

(g
2
3
+

p
2 >R

3 |NV(k)|2 dx − 3CS
2 g

p
2

− 2
3 >R

3 |k|
8
3 dx)2

>R
3 |Nk|2 dx

,

for g ¥ (0, M) and p ¥ ( 4
3 , 11

3 ), independently of k. Indeed, given M there
exists p ¥ ( 4

3 , 11
3 ) such that

dfk

dg
=−

1
4

1
>R

3 |Nk|2 dx
1g

2
3
+

p
2 F

R
3

|NV(k)|2 dx −
3CS

2
g

p
2

− 2
3 F

R
3

|k|
8
3 dx2

×112
3
+

p
2
2 g

p
2

− 1
3 F

R
3

|NV(k)|2 dx dy −1p
2

−
2
3
2 3CS

2
g

p
2

− 5
3 F

R
3

|k|
8
3 dx2

is nonpositive for every k ¥ BM, where we have used (5). The optimal
bound is obtained as p approaches 11

3 . Finally, this allows to establish the
inequality IM

1 [ Ig
1, which concludes the proof. L

Remark. It is not clear to the authors if the constant in (15) is or not
optimal. Some idea about its optimality could open the discussion on the
nonexistence of minimizers when (11) in Proposition 2.3 is violated.

Remark. Note that the Thomas–Fermi correction usually appears
with positive sign (see ref. 18), which can be seen as a repulsive contribu-
tion to the potential. Then, the addition of this kind of correction simplifies
the minimizing argument because combining the repulsive Thomas–Fermi
with the attractive Slater correction allows to convexify the functional, see
ref. 17.

Now, a simple application of Propositions 2.3 and 2.8 yields the exis-
tence of a minimum, since every minimizing sequence is bounded in H1(R3)
and relatively compact (up to a translation). Furthermore, by standard
arguments (see ref. 15) the regularity of the minimum can be deduced.
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Theorem 2.9. Under the hypothesis of Proposition 2.8, there exists
a minimizer kM ¥ C.(R3) of (7) which satisfies the following Euler–
Lagrange equation associated with the total energy functional E[k]:

−
1
2

DkM(x)+
1

4p
F

R
3

|kM(xŒ)|2 kM(x)
|x − xŒ|

dxŒ − CS |kM |
2
3 kM(x)=bkM(x) (17)

in a distributional sense, for some b < 0.

The following paragraph is devoted to show some consequences of this
result.

2.1.3. Stationary Solutions and Solutions Preserving the Lp Norm in
the Repulsive Case with Negative Energy

From Theorem 2.9 we can deduce the existence of standing waves
k(x, t)=e−ibtk(x) as solutions of the SPS system in the repulsive case.
Actually, these are time-periodic solutions which preserve the density. For
this kind of solutions, the repulsive SPS system is reduced to the time-
independent Schrödinger equation

bk=− 1
2 Dk+Vk − CSn

1
3 k, lim

|x| Q .

k=0, (18)

coupled to the Poisson equation

DV=|k|2, lim
|x| Q .

V=0. (19)

The system (18) and (19) can be written as an Euler–Lagrange equation
associated with (7) (cf. (17)). Then, Theorem 2.9 implies the existence of
solutions kM. Since these functions minimize the total energy operator,
(14) holds.

Let us also note that this kind of solutions do not exist for the SP
system in the repulsive case, where every solution is dispersive.

Let us now introduce some other solutions which preserve the Lp

norm.

Proposition 2.10. There exist solutions of the SPS system with
negative potential energy and constant Lp norm along the time evolution.

Proof. The proof is based on the Galilean invariance of the system,
see ref. 3. In fact, this property guarantees that if k(x, t) is a solution to the
SPS system with initial data k0, then the solution corresponding to initial
data kN(x, 0)=e iNxk0(x), with N ¥ R3, is kN(x, t)=e iNx − itN2

k(x − 2tN, t).
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Now, using the minimal energy solution we can construct the solution
e−ibte iNx − it N2

2 kM(x − tN), which has initial data e iNxkM(x). This solution
preserves the Lp norm, has negative potential energy and its total energy is

E(e−ibte iNx − it N2

2 kM(x − tN))=1
2 N2 ||kM ||L2(R

3)+IM,

which obviously exceeds the minimal energy. A similar idea has been used
in ref. 13. L

2.1.4. Optimal Kinetic Energy Bounds

Minimizing the total energy functional implies, by Lemma 2.7, the
minimization of the associated functional

T(k)=−
1
4

(EPOT(k))2

EKIN(k)
.

In the next result we use this fact to deduce optimal bounds for the kinetic
energy of a solution, depending on the initial total energy and the
minimum of the energy functional.

Proposition 2.11. The kinetic energy associated with a solution of
the repulsive SPS system in H1(R3), EKIN, ranges between the optimal
values

E±
KIN=−2IM

11 −
E0

2IM
±=1 −

E0

IM

2 , (20)

where E0 is the initial energy and IM is the infimum of the total energy over
the set {k ¥ H1(R3); ||k||L2(R

3)=M}. Here, M is assumed to satisfy (15).

Proof. As before, this is a direct consequence of the equivalence
between the energy minimization problem and (13). Since kM minimizes
(7), we have

−
1
4

(EPOT(k))2

EKIN(k)
\ −

1
4

(EPOT(kM))2

EKIN(kM)
=−

1
4

4 I2
M

− IM
=IM,

for all k ¥ H1(R3) such that ||k||L2(R
3)=M. Then, given k( · , t) ¥ H1(R3) a

solution of the SPS system we find

EPOT(k) \ − 2 ` − IM `EKIN(k), -t \ 0.
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This yields a relation between the kinetic and the total energy:

E0(k) \ − 2 ` − IM `EKIN(k)+EKIN(k) -t \ 0,

or, using that the potential energy is negative,

E2
KIN+(4IM − 2E0) EKIN+E2

0 [ 0.

This concludes the proof. L

3. ASYMPTOTIC BEHAVIOUR IN THE REPULSIVE CASE

In this section we study the time evolution of solutions to the SPS
system. The standard arguments used to obtain various bounds on the
Lp(R3) norms of solutions to nonlinear Schrödinger equations are fruitless
in our case. This is due to the fact that the sign of the potential energy
depends on the balance between the Coulombian potential and the Slater
correction. Then, we have to combine these arguments with some other
techniques to find the Lp(R3) bounds.

By using similar arguments to those of ref. 26 we can derive an equa-
tion which models the dispersion of solutions to the SPS system. Let us
define

(Dx)2=def
Ox2P(t) −OxP2 (t) and (Dp)2=def

Op2P(t) −OpP2 (t),

where OxP(t) denotes the expected value for the position operator

OxP(t)=F
R

3
kg(x, t) xk(x, t) dx,

while OpP(t) is the expected value for the linear momentum operator

OpP(t)=
1
i

F
R

3
kg(x, t) Nk(x, t) dx, (21)

which is preserved along the time evolution (see ref. 3). In terms of these
operators we can prove the following result.

Theorem 3.1. The position and momentum dispersions for a solu-
tion k(x, t) of the SPS system with initial data in S={u ¥ H2(R3);
xu ¥ L2(R3)} satisfy the following equation

d2

dt2 (Dx)2 (t)=2 1E(t) −
1
2
OpP2 (t)2+(Dp)2 (t),
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or equivalently

d2

dt2 Ox2P=2 11
2
Op2P+E(t)2 , (22)

where E(t) denotes the total energy.

By simple computations starting from the dispersion equation (22) we
can deduce the pseudo-conformal law verified by a SPS solution k(t, x) :

d
dt
1 ||(x+itN) k||2

L2(R
3)+t2 F

R
3

Vn dx −
3
2

CSt2 F
R

3
|k|

8
3 dx2

=t F
R

3
Vn dx −

3
2

CSt F
R

3
|k|

8
3 dx. (23)

This shows an alternative derivation for the pseudo-conformal law widely
studied in the literature (refs. 5 and 12).

Equation (22) allows to deduce (for positive energies) some important
consequences about the long time behaviour of the solutions. The first one
is that the solutions tend to expand unboundedly when the energy is posi-
tive. The second consequence is a decay bound for the potential energy.

Proposition 3.2. Let f ¥ S the initial data of the SPS system such
that E(f) > 0. Then, the system expands unboundedly for large times and
the position dispersion Ox2P(t) grows like O(t2).

Proof. To deduce this result we consider again the dispersion equa-
tion (22), rewritten as

1
2

d2

dt2 Ox2P=EKIN+E(t)=2E(t)− EPOT. (24)

Since ||f||L2=M and E(f) — E are time invariant, we can bound the right-
hand side of (24) by using (20) and obtain

E+E−
KIN [

1
2

d2

dt2 Ox2P [ E+E+
KIN.

By using the lower bound of the Slater potential, we also find

E <
1
2

d2

dt2 Ox2P [ 2E+C(E, M).
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If E is positive, then the upper and lower bounds are also positive.
This allows to deduce the result by integrating twice in time. L

As an immediate consequence we can deduce lower bounds for the Lp

norm of the solutions. These lower bounds are either positive constants or
coincide with the usual decay rates of the free Schrödinger equation,
depending on a relation between the total energy, the mass and the linear
momentum (21). For simplicity we shall denote M[k] — OpP(0)=
1
i >R

3 kg(x) Nk(x).

Corollary 3.3. Let k be a SPS solution with initial data f ¥ S such
that

E[f] <
1
2

|M[f]|2

||f||L2(R
3)

. (25)

Then, there exist positive constants C, CŒ, and Cœ depending on ||f||L2(R
3),

E[f], |M[f]|2 and p such that

||k(t)||Lp(R
3) \ C, EPOT[k] [ − CŒ, -t \ 0, p ¥ [ 8

3 , 6]. (26)

In the case

E[f] \
1
2

|M[f]|2

||f||L2(R
3)

, (27)

the following lower bound

||k( · , t)||Lp(R
3) \

Cœ

t
3p − 6

2p

, -t > t > 0, p ¥ [2, 6], (28)

holds.

Proof. To show the relevance of (25) and (27) we shall use again the
Galilean invariance of the system. The solutions kN associated with an
initial condition fN=e iNxf0(x) have the same Lp(R3) norm and the same
potential energy for every N and time t, while the total energy is

E[fN]=1
2 N2 ||fN ||L2(R

3)+NM[f]+E[f0].

It is a simple matter to observe that for every f0 the Galilean invariance
gives a parametric family of initial data fN for which the time evolution of
the Lp(R3) norm and of the potential energy are the same. The analysis of
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a particular member of the family of Galilean transformations allows to
deduce the behaviour of the Lp(R3) norm and of the potential energy for
the whole family.

By a simple optimization argument one can easily check that (25)
implies the existence of initial data with negative energy in the family, while
the energy of the initial data is nonnegative if (27) holds.

Under hypothesis (27), the initial data f can be assumed to have posi-
tive energy (if not, f can be replaced by fNŒ belonging to the class of
Galilean transforms of f with positive energy). We have

||k( · , t)||2
L2(R

3)=F
|x| [ R

|k(x, t)|2 dx+F
|x| \ R

|k(x, t)|2 dx,

[ CR
3p − 6

p ||k(x, t)||2
Lp(R

3)+
1

R2 Ox2P.

By optimizing over R we obtain

||k( · , t)||2
L2(R

3) [ C(||k( · , t)||Lp(R
3))

4p
5p − 6 Ox2P

3p − 6
5p − 6 .

This concludes (28) by using Proposition 3.2 and the positivity of the total
energy.

On the other hand, if f fulfills (25), then we can choose a Galilean
translation fNŒ whose total energy is negative. In this case, we find

− ||kNŒ(t)||
8
3

L
8
3(R

3)
< E[fNŒ] < 0, -t \ 0.

We conclude (28) by using the Hölder inequality, mass preservation and the
invariance of the Lp norm of the solutions under Galilean translations. L

The next result provides a rate-of-decay estimate for the potential
energy. However, the potential energy may be negative as shown before.
For instance, from (5) we know that the potential energy is always non-
positive in the repulsive case.

Proposition 3.4. Let f ¥ S the initial data of the SPS system. Then,
the potential energy associated with the solution k(x, t) satisfies the
inequality

EPOT(k)(t) [
Ct

t
, -t \ t > 0, (29)

where Ct is a positive constant depending on t.
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Proof. Integrating the pseudo-conformal law from t to t we find

||(x+itN) k( · , t)||2
L2(R

3)+t2 F
R

3
|NV(x, t)|2 dx −

3
2

CSt2 F
R

3
|k(x, t)|

8
3 dx

=C+F
t

t

1 s F
R

3
V(x, s) n(x, s) dx −

3
2

CSs F
R

3
|k(x, s)|

8
3 dx2 ds, (30)

where

C=||(x+itN) k( · , t)||2
L2(R

3)+t2 F
R

3
|NV(x, t)|2 dx −

3
2

t2CS F
R

3
|k(x, t)|

8
3 dx
(31)

and t \ 0. Notice that this constant can be chosen positive if t is small
enough because the right-hand side in (31) goes to ||xf||2

L2(R
3) as t Q 0. Let

g(t)=t2 >R
3 Vn dx − 3

2 CSt2 >R
3 |k|

8
3 dx. Then, from (30) we deduce

g(t) [ C+F
t

t

g(s)
s

ds.

Now Gronwall’s lemma yields

g(t)=t2 F
R

3
Vn dx −

3
2

CSt2 F
R

3
|k|

8
3 dx [

Ct
t

— Ctt, -t \ t,

and we are done with the proof. L

Consider the function

fk(t)=||(x+itN) k( · , t)||2
L2(R

3)+t2 F
R

3
|NV(x, t)|2 dx −

3
2

CSt2 F
R

3
|k(x, t)|

8
3 dx.

From (29) we get

fk(t) [ C+F
t

t

Cts
s

ds [ Ctt.

The evolution of fk (more precisely, the evolution of its sign) implies
qualitative differences in the behaviour of the associated solution. The
following result provides a decay estimate for the potential energy in the
attractive case or a weak decay property for some Lp, q-norms of the wave
functions.
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Corollary 3.5. If there exists t0 ¥ R+ such that fk(t0) < 0, then
fk(t) < 0 for all t \ t0. Furthermore,

2EPOT(k) [ 1fk(t0)
t0

2 1
t

< 0, -t \ t0.

Otherwise we have

F
.

t

||k(s)||
4p

3(p − 2)

Lp(R
3)

ds [ C, -p ¥ (2, 6],

where C is a positive constant depending on p, ||f||L2, ||xf||L2, and t.

Proof. The first part of the corollary is deduced by using similar
arguments to those of Proposition 3.4, when taking t=t0.

Setting kg(x, t) :=exp(− ix2

2t ) k(x, t) we have

itNkg(x, t)=exp 1 −
ix2

2t
2 (x+itN) k, (32)

which implies

fk(t)=t2 ||Nkg ||2
L2(R

3)+t2 F
R

3
V(x, t) n(x, t) dx −

3
2

CSt2 F
R

3
|k(x, t)|

8
3 dx.

In the case fk > 0 we have

||Nkg ||2
L2(R

3)+F
R

3
V(x, t) n(x, t) dx − 3

2 CS F
R

3
|k(x, t)|

8
3 dx > 0. (33)

On the other hand, we can rewrite (23) in the following form

d
dt

(t ||Nkg( · , t)||2
L2(R

3)+2tEPOT(k)(t))=−||Nkg( · , t)||2
L2(R

3).

Integrating between t > 0 and t > t yields

t ||Nkg( · , t)||2
L2(R

3)+2tEPOT(k)(t)=
fk(t)

t
− F

t

t

||Nkg( · , t)||2
L2(R

3). (34)

Now, the left-hand side of (34) can be estimated by using (33), which gives

F
t

t

||Nkg( · , t)||2
L2(R

3) [
fk(t)

t
.
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The proof concludes by noting that the Lp norm of k and kg coincide, then
we can apply the Gagliardo–Nirenberg inequality to kg. L

Let us now prove some decay properties of the solutions in the case of
nonnegative potential energy.

Proposition 3.6. Let f ¥ S the initial data of the SPS system and let
k be the corresponding solution. If the potential energy associated with k

is nonnegative along the time evolution, then there exist constants C > 0
which depend on ||f||L2(R

3) and ||xf||L2(R
3) such that

(i) - |t| \ 1, -p ¥ [2, 6], ||k( · , t)||Lp(R
3) [

C

|t|
3
2

( 1
2

− 1
p)

,

(ii) - |t| \ 1, -p ¥ [1, 3], ||n( · , t)||Lp(R
3) [

C

|t|
3
2

(1 − 1
p)

,

(iii) - |t| \ 1, -p ¥ ]3, .[, ||V( · , t)||Lp(R
3) [

C

t ( 1
2

− 3
2p)

,

(iv) - |t| \ 1, -p ¥ ] 3
2 , .[, ||NV( · , t)||Lp(R

3) [
C

t (1 − 3
2p)

.

Proof. The proof follows the steps of Proposition 3.4 and the argu-
ments given in refs. 6 and 12.

Using (32) the pseudo-conformal law can be written as

t2 ||Nkg( · , t)||2
L2(R

3)=C+F
t

t

1 s F
R

3
|NV(x, s)|2 dx −

3
2

CSs F
R

3
|k(s)|

8
3 dx2 ds

− t2 F
R

3
|NV(x, t)|2 n(x, t) dx+

3
2

CSt2 F
R

3
|k(x, t)|

8
3 dx.

Then, applying (29) and taking into account the nonnegativity of the
potential energy we find

||Nkg( · , t)||2
L2(R

3) [
CŒ

tt
,

for all t \ t, where CŒ=CŒ(C, t) > 0. Now, the Gagliardo–Nirenberg
inequality (applied to kg ) allows to get (i) for p ¥ [2, 6] and a=3( 1

2 − 1
p):
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||k( · , t)||Lp(R
3)=||kg( · , t)||Lp(R

3) [ c(p) ||Nkg( · , t)||a
L2(R

3) ||kg( · , t)||1 − a
L2(R

3)

[ c(p) ||Nkg( · , t)||a
L2(R

3) ||f||1 − a
L2(R

3) [
CŒ

t
3
2

( 1
2

− 1
p)

.

(ii) is a consequence of ||n( · , t)||Lp(R
3)=||k( · , t)||2

L2p, while (iii) can be
deduced from the Hardy–Littlewood–Sobolev inequality and (ii):

||V( · , t)||Lp(R
3) [ CŒ >1

r
f n( · , t)>

Lp(R
3)

[ CŒ ||n( · , t)||Lq(R
3)

[ CŒ
1

t
3
2

(1 − 1
q)

[ CŒ
1

t ( 1
2

− 3
2p

)
,

where 1
q=

1
p+

2
3 and q ¥ ]1, 3[. The proof of (iv) is analogous to that

of (iii). L

4. MINIMIZATION OF THE ENERGY IN THE ATTRACTIVE CASE

The aim of this section is to give some results concerning the asymp-
totic behaviour in time of solutions to the SPS system under the assump-
tion of attractive interactions. In this case the energy functional reads

E[k]=F
R

3
31

2
|Nk(x, t)|2 − F

R
3

|k(x, t)|2 |k(xŒ, t)|2

8p |x − xŒ|
dxŒ −

3
4

CS |k(x, t)|
8
3 4 dx.

(35)

Using the same arguments developed before to bound the energy in the
repulsive case and the inequality (5), it can be shown that this functional
has a lower bound over the set {k ¥ H1(R3); ||k||L2(R

3)=M}. In ref. 3 it was
proved the existence of a minimizer kM of the energy functional (35)
in H1(R3) under the constraint ||k||L2(R

3)=M, M ¥ R+. Furthermore, this
minimum was found to be spherically symmetric. The proof given above
can be also adapted to this case, therefore it might give an alternative way
to obtain the existence of a minimum. In this case the restriction on the
L2-norm is not necessary because the potential energy is always negative.

Theorem 4.1. For all M > 0 there exists a minimizer kM ¥ C.(R3)
of the problem

min{E[k]; k ¥ H1(R3), ||k||L2(R
3)=M},
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where E[k] denotes the energy functional (35). Also, kM satisfies the
Euler–Lagrange equation

−
1
2

DkM −
1

4p
F

R
3

|kM(xŒ, t)|2

|x − xŒ|
dxŒ kM − CS |kM |

2
3 kM=bkM

in a distributional sense, for some b < 0.

As an immediate consequence we get the existence of stationary waves
of the form k(x, t)=e−ibtkM(x) and we can construct solutions of the
same type than in Proposition 2.10 satisfying (14). Also, from the mini-
mization of the total energy operator we can deduce the same bound for
the kinetic energy as in (20).

The dispersion properties (in the positive energy case) as well as the
dispersion and pseudo-conformal laws are also valid in this case. However,
since the potential energy is always negative in the attractive case, the
decay properties of the solutions are no longer verified.

It is also possible to study the asymptotic behaviour of the solutions at
t=0. Actually, this analysis is a straightforward adaptation of the tech-
niques developed in ref. 6 and shall be omitted here.
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